Hurewicz fibrations, almost submetries and critical points of smooth maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On smooth maps with finitely many critical points

We consider manifolds M which admit smooth maps into a connected sum of S × S with only finitely many critical points, for n ∈ {2, 4, 8}, and compute the minimal number of critical points.

متن کامل

Transfer Maps for Fibrations

where for simplicity X+ denotes the suspension spectrum of the space obtained from X by adding a disjoint basepoint. One key property of τ(f) is the fact that the composite map f+ ·τ(f) : B+ −→ B+ induces a map on integral homology which is multiplication by the Euler characteristic χ(F ). The purpose of this paper is to construct something like the transfer τ(f) in many cases in which F is not...

متن کامل

Examples of Smooth Maps with Finitely Many Critical Points in Dimensions

We consider manifolds M which admit smooth maps into a connected sum of S × S with only finitely many critical points, for n ∈ {2, 4, 8}, and compute the minimal number of critical points.

متن کامل

On Rational Maps with Two Critical Points

This is a preliminary investigation of the geometry and dynamics of rational maps with only two critical points.

متن کامل

Extensions of Maps as Fibrations and Cofibrations

Suppose /: X —• Y is a map of 1-connected spaces. In the "stable" range, roughly where the connectivity of Y exceeds the homology, or homotopy, dimension of X, it is well known that / can be extended as a cofibration C — X — Y, or respectively a fibration X — Y — B. A criterion is given for the existence of such extensions in a less restrictive "metastable" range. A main result is that if / is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2017

ISSN: 0933-7741,1435-5337

DOI: 10.1515/forum-2016-0009